Construct validation of a DCM for resting state fMRI
نویسندگان
چکیده
Recently, there has been a lot of interest in characterising the connectivity of resting state brain networks. Most of the literature uses functional connectivity to examine these intrinsic brain networks. Functional connectivity has well documented limitations because of its inherent inability to identify causal interactions. Dynamic causal modelling (DCM) is a framework that allows for the identification of the causal (directed) connections among neuronal systems--known as effective connectivity. This technical note addresses the validity of a recently proposed DCM for resting state fMRI--as measured in terms of their complex cross spectral density--referred to as spectral DCM. Spectral DCM differs from (the alternative) stochastic DCM by parameterising neuronal fluctuations using scale free (i.e., power law) forms, rendering the stochastic model of neuronal activity deterministic. Spectral DCM not only furnishes an efficient estimation of model parameters but also enables the detection of group differences in effective connectivity, the form and amplitude of the neuronal fluctuations or both. We compare and contrast spectral and stochastic DCM models with endogenous fluctuations or state noise on hidden states. We used simulated data to first establish the face validity of both schemes and show that they can recover the model (and its parameters) that generated the data. We then used Monte Carlo simulations to assess the accuracy of both schemes in terms of their root mean square error. We also simulated group differences and compared the ability of spectral and stochastic DCMs to identify these differences. We show that spectral DCM was not only more accurate but also more sensitive to group differences. Finally, we performed a comparative evaluation using real resting state fMRI data (from an open access resource) to study the functional integration within default mode network using spectral and stochastic DCMs.
منابع مشابه
Bridging the Gap: Dynamic Causal Modeling and Granger Causality Analysis of Resting State Functional Magnetic Resonance Imaging
Granger causality (GC) and dynamic causal modeling (DCM) are the two key approaches used to determine the directed interactions among brain areas. Recent discussions have provided a constructive account of the merits and demerits. GC, on one side, considers dependencies among measured responses, whereas DCM, on the other, models how neuronal activity in one brain area causes dynamics in another...
متن کاملA DCM for resting state fMRI
This technical note introduces a dynamic causal model (DCM) for resting state fMRI time series based upon observed functional connectivity--as measured by the cross spectra among different brain regions. This DCM is based upon a deterministic model that generates predicted crossed spectra from a biophysically plausible model of coupled neuronal fluctuations in a distributed neuronal network or ...
متن کاملBrain Activity Map Extraction of Neuromyelitis Optica Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Neuromyelitis Optica (NMO) is a rare inflammatory disease of the central nervous system which generally affecting the spinal cord and optic nerve. Damage to the optic nerve can result in the patient's dim vision or even blindness, while the spinal cord damage may lead to sensory and motor paralysis and the weakness of the lower limbs in the patient. Magnetic Reson...
متن کاملAnalysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension
Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...
متن کاملBrain Activity Map Extraction from Multiple Sclerosis Patients Using Resting-State fMRI Data Based on Amplitude of Low Frequency Fluctuations and Regional Homogeneity Analysis
Introduction: Multiple Sclerosis (MS) is the most common non-traumatic neurological diseases of young adults. MS often reported during ages 20-62. MS affects the various anatomical parts of the central nervous system. Up to 65% of multiple sclerosis patients MS patients suffer from various problems, such as fatigue, depression, pain and sleep disorders. Unlike MRI, that only sh...
متن کامل